Skip links

Evolution of Software Architecture

Jump To Section

As with any field, software architecture is also evolving with times. In the 90s and early 2000, servers dominated the scene and clients were considered dumb terminals.

Revolutionizing Dynamics: Shifting Paradigms in Software Architecture

As with any field, the Evolution of Software Architecture is evident in the shifting paradigms of computing over time. In the 90s and early 2000s, servers held sway, relegating clients to the status of “dumb terminals.”

With the dawn of the 2010s, smartphones and stronger client machines shifted the computing to client-side. Thereby shifting the thought process of software craftsmanship. Here’s a timeline of the evolution that catches the major pillars of architecture evolution from 90’s through the present. It shows the journey how a typical client-server architecture that started just as an experiment has evolved into supporting millions and billions of requests per second.This showcases the remarkable evolution of software architecture over time.

Picture of Awkash Agarwal

Awkash Agarwal

Latest Reads


Suggested Reading

Ready to Unlock Your Enterprise's Full Potential?

Adaptive Clinical Trial Designs: Modify trials based on interim results for faster identification of effective drugs.Identify effective drugs faster with data analytics and machine learning algorithms to analyze interim trial results and modify.
Real-World Evidence (RWE) Integration: Supplement trial data with real-world insights for drug effectiveness and safety.Supplement trial data with real-world insights for drug effectiveness and safety.
Biomarker Identification and Validation: Validate biomarkers predicting treatment response for targeted therapies.Utilize bioinformatics and computational biology to validate biomarkers predicting treatment response for targeted therapies.
Collaborative Clinical Research Networks: Establish networks for better patient recruitment and data sharing.Leverage cloud-based platforms and collaborative software to establish networks for better patient recruitment and data sharing.
Master Protocols and Basket Trials: Evaluate multiple drugs in one trial for efficient drug development.Implement electronic data capture systems and digital platforms to efficiently manage and evaluate multiple drugs or drug combinations within a single trial, enabling more streamlined drug development
Remote and Decentralized Trials: Embrace virtual trials for broader patient participation.Embrace telemedicine, virtual monitoring, and digital health tools to conduct remote and decentralized trials, allowing patients to participate from home and reducing the need for frequent in-person visits
Patient-Centric Trials: Design trials with patient needs in mind for better recruitment and retention.Develop patient-centric mobile apps and web portals that provide trial information, virtual support groups, and patient-reported outcome tracking to enhance patient engagement, recruitment, and retention
Regulatory Engagement and Expedited Review Pathways: Engage regulators early for faster approvals.Utilize digital communication tools to engage regulatory agencies early in the drug development process, enabling faster feedback and exploration of expedited review pathways for accelerated approvals
Companion Diagnostics Development: Develop diagnostics for targeted recruitment and personalized treatment.Implement bioinformatics and genomics technologies to develop companion diagnostics that can identify patient subpopulations likely to benefit from the drug, aiding in targeted recruitment and personalized treatment
Data Standardization and Interoperability: Ensure seamless data exchange among research sites.Utilize interoperable electronic health record systems and health data standards to ensure seamless data exchange among different research sites, promoting efficient data aggregation and analysis
Use of AI and Predictive Analytics: Apply AI for drug candidate identification and data analysis.Leverage AI algorithms and predictive analytics to analyze large datasets, identify potential drug candidates, optimize trial designs, and predict treatment outcomes, accelerating the drug development process
R&D Investments: Improve the drug or expand indicationsUtilize computational modelling and simulation techniques to accelerate drug discovery and optimize drug development processes