Skip links

Demand Management – The Past and The Future

Jump To Section

Having an exact plan in place to manage customer demand is a dream for any business

From Spreadsheets to ERP: The Digital Transformation of Demand Management

Having an exact plan in place to manage customer demand is a dream for any business. The overall goal of demand management is to plan for sufficient stock and create awareness among customers to purchase the stock once it is available. Let’s look at how demand management as a practice has evolved through the decades.

It is believed that serious attempts to digitize demand management started way back in the 1980s when the spreadsheet was first invented, and it got a lift-off after the introduction of Microsoft Excel. Many organizations are still using Microsoft Excel as a tool for demand planning.

It progressed to the next stage when ERP vendors like SAP labs and Oracle started offering demand management services that included statistical forecasting in the early 1990’s. It was followed by the Advanced Planning and Solution (APS) vendors coming out with their solutions for demand management.

Re-imagining Demand Management in the Digital Age

However, changes in the new millennium, like the emergence of social media, have changed the way businesses operate irreversibly. It has become imperative for an organization to have a presence in social media, for both demand ‘listening’ as well as demand ‘generation’. Several social and technology paradigms like this have led to a need to track, quantify, and use all these demand influencers in the overall demand management faculty. Traditional univariate demand forecast — i.e., taking the historical demand figures and extrapolating them into the future — has proven to be inadequate, albeit widely used still.

Future of Demand Management

The traditional approaches leave several questions unanswered, in the demand planners mind — What factors influence my product’s demand? How much does each factor influence demand (they can’t all have equal weightage)? Can I tune any factors to generate more demand? How do I forecast the demand in an uncertain economic climate? How do I forecast demand for a new product? And so on.

AI and ML in Demand Management: Future or Reality?

A better treatment of demand management involves leveraging artificial intelligence (AI) and machine learning (ML), to generate a more transparent view into how the various factors influence demand, instead of just a black box demand forecast. Is that in the future or is it here now?

Jayaprakash Nair

Jayaprakash Nair

Latest Reads


Suggested Reading

Ready to Unlock Yours Enterprise's Full Potential?

Adaptive Clinical Trial Designs: Modify trials based on interim results for faster identification of effective drugs.Identify effective drugs faster with data analytics and machine learning algorithms to analyze interim trial results and modify.
Real-World Evidence (RWE) Integration: Supplement trial data with real-world insights for drug effectiveness and safety.Supplement trial data with real-world insights for drug effectiveness and safety.
Biomarker Identification and Validation: Validate biomarkers predicting treatment response for targeted therapies.Utilize bioinformatics and computational biology to validate biomarkers predicting treatment response for targeted therapies.
Collaborative Clinical Research Networks: Establish networks for better patient recruitment and data sharing.Leverage cloud-based platforms and collaborative software to establish networks for better patient recruitment and data sharing.
Master Protocols and Basket Trials: Evaluate multiple drugs in one trial for efficient drug development.Implement electronic data capture systems and digital platforms to efficiently manage and evaluate multiple drugs or drug combinations within a single trial, enabling more streamlined drug development
Remote and Decentralized Trials: Embrace virtual trials for broader patient participation.Embrace telemedicine, virtual monitoring, and digital health tools to conduct remote and decentralized trials, allowing patients to participate from home and reducing the need for frequent in-person visits
Patient-Centric Trials: Design trials with patient needs in mind for better recruitment and retention.Develop patient-centric mobile apps and web portals that provide trial information, virtual support groups, and patient-reported outcome tracking to enhance patient engagement, recruitment, and retention
Regulatory Engagement and Expedited Review Pathways: Engage regulators early for faster approvals.Utilize digital communication tools to engage regulatory agencies early in the drug development process, enabling faster feedback and exploration of expedited review pathways for accelerated approvals
Companion Diagnostics Development: Develop diagnostics for targeted recruitment and personalized treatment.Implement bioinformatics and genomics technologies to develop companion diagnostics that can identify patient subpopulations likely to benefit from the drug, aiding in targeted recruitment and personalized treatment
Data Standardization and Interoperability: Ensure seamless data exchange among research sites.Utilize interoperable electronic health record systems and health data standards to ensure seamless data exchange among different research sites, promoting efficient data aggregation and analysis
Use of AI and Predictive Analytics: Apply AI for drug candidate identification and data analysis.Leverage AI algorithms and predictive analytics to analyze large datasets, identify potential drug candidates, optimize trial designs, and predict treatment outcomes, accelerating the drug development process
R&D Investments: Improve the drug or expand indicationsUtilize computational modelling and simulation techniques to accelerate drug discovery and optimize drug development processes