Skip links

Data is transforming the entire business landscape

Jump To Section

This article was published on The Technology Headlines.

This article was published on The Technology Headlines.

Data Solutions: Aligning Objectives for Optimal Outcomes

Data is fundamental for any business to see real transformation. Relevant data can help in transforming businesses and achieve real outcomes. With data, we are able to understand customer behavior and personas in a much better and clearer way. Build services and various opportunities to serve different segments of customers by analyzing their behavior and personas. The right perspective towards data is that it has to be relevant, and technology has to be simplified to derive outcomes.

The other aspect is to connect different business entities to make them more operationally efficient. Most important today is the collaboration of business and technology. Business needs to take ownership of making sure that the data is aligned to specified business outcomes. Only then you can apply AI algorithms or any other technology to be more effective.

Data-Driven Business Strategies

Data is driving product opportunities by connecting the consumers and evolving new business models. However, today many companies are trying a big bang approach and trying to make sense out of it. In the pursuit, business is seeing very little relevance to actual outcomes.

We are helping our customers take a more incremental approach, based on the priority of their business outcomes. This takes data in a sequential and streamlined manner to the relevant data lake and provides actionable insights aligned to the business objectives and outcomes.

It could mean co-creating new products by listening to customers in real time, which we are presently working on with one of the largest global apparel maker. It could also mean increasing marketing effectiveness and fast decisions, connecting marketing, sales and the supply chain. We have had recent success in doing this with a P2P lending platform in the European market. Risk management and compliance is another outcome that can be handled with data, which is a rising problem in the banking sector and we are helping our BFSI customers in this area.

When you take the incremental approach, the business is able to map the entire process of data handling to actual objectives.

Picture of Raj Vattikuti

Raj Vattikuti

Raj Vattikuti is an American-Indian entrepreneur, business executive and philanthropist. He is the Founder and Chairman of Altimetrik Corp. He is also the founder of Vattikuti Foundation. through which he is involved in many charitable causes.

Latest Reads

Subscribe

Suggested Reading

Ready to Unlock Your Enterprise's Full Potential?

Vikas Krishan

Chief Digital Business Officer and Head of the EMEA region

Vikas (Vik) Krishan serves as the Chief Digital Business Officer and Head of the EMEA region for Altimetrik. He is responsible for leading and growing the company’s presence across new and existing client relationships within the region.

Vik is a seasoned executive and brings over 25 years of global experience in Financial Services, Digital, Management Consulting, Pre- and Post-deal services and large/ strategic transformational programmes, gained in a variety of senior global leadership roles at firms such as Globant, HCL, Wipro, Logica and EDS and started his career within Investment Banking. He has developed significant cross industry experience across a wide variety of verticals, with a particular focus on working with and advising the C-Suite of Financial Institutions, Private Equity firms and FinTech’s on strategy and growth, operational excellence, performance improvement and digital adoption.

He has served as the engagement lead on multiple global transactions to enable the orchestration of business, technology, and operational change to drive growth and client retention.

Vik, who is based in London, serves as a trustee for the Burma Star Memorial Fund, is a keen photographer and an avid sportsman.

Megan Farrell Herrmanns

Chief Digital Officer, US Central

Megan is a senior business executive with a passion for empowering customers to reach their highest potential. She has depth and breadth of experience working across large enterprise and commercial customers, and across technical and industry domains. With a track record of driving measurable results, she develops trusted relationships with client executives to drive organizational growth, unlock business value, and internalize the use of digital business as a differentiator.

At Altimetrik, Megan is responsible for expanding client relationships and developing new business opportunities in the US Central region. Her focus is on digital business and utilizing her experience to create high growth opportunities for clients. Moreover, she leads the company’s efforts in cultivating and enhancing our partnership with Salesforce, strategically positioning our business to capitalize on new business opportunities.

Prior to Altimetrik, Megan spent 10 years leading Customer Success at Salesforce, helping customers maximize the value of their investments across their technology stack. Prior to Salesforce, Megan spent over 15 years with Accenture, leading large transformational projects for enterprise customers.

Megan earned a Bachelor of Science in Mechanical Engineering from Marquette University. Beyond work, Megan enjoys playing sand volleyball, traveling, watching her kids soccer games, and is actively involved in a philanthropy (Advisory Council for Cradles to Crayons).

Adaptive Clinical Trial Designs: Modify trials based on interim results for faster identification of effective drugs.Identify effective drugs faster with data analytics and machine learning algorithms to analyze interim trial results and modify.
Real-World Evidence (RWE) Integration: Supplement trial data with real-world insights for drug effectiveness and safety.Supplement trial data with real-world insights for drug effectiveness and safety.
Biomarker Identification and Validation: Validate biomarkers predicting treatment response for targeted therapies.Utilize bioinformatics and computational biology to validate biomarkers predicting treatment response for targeted therapies.
Collaborative Clinical Research Networks: Establish networks for better patient recruitment and data sharing.Leverage cloud-based platforms and collaborative software to establish networks for better patient recruitment and data sharing.
Master Protocols and Basket Trials: Evaluate multiple drugs in one trial for efficient drug development.Implement electronic data capture systems and digital platforms to efficiently manage and evaluate multiple drugs or drug combinations within a single trial, enabling more streamlined drug development
Remote and Decentralized Trials: Embrace virtual trials for broader patient participation.Embrace telemedicine, virtual monitoring, and digital health tools to conduct remote and decentralized trials, allowing patients to participate from home and reducing the need for frequent in-person visits
Patient-Centric Trials: Design trials with patient needs in mind for better recruitment and retention.Develop patient-centric mobile apps and web portals that provide trial information, virtual support groups, and patient-reported outcome tracking to enhance patient engagement, recruitment, and retention
Regulatory Engagement and Expedited Review Pathways: Engage regulators early for faster approvals.Utilize digital communication tools to engage regulatory agencies early in the drug development process, enabling faster feedback and exploration of expedited review pathways for accelerated approvals
Companion Diagnostics Development: Develop diagnostics for targeted recruitment and personalized treatment.Implement bioinformatics and genomics technologies to develop companion diagnostics that can identify patient subpopulations likely to benefit from the drug, aiding in targeted recruitment and personalized treatment
Data Standardization and Interoperability: Ensure seamless data exchange among research sites.Utilize interoperable electronic health record systems and health data standards to ensure seamless data exchange among different research sites, promoting efficient data aggregation and analysis
Use of AI and Predictive Analytics: Apply AI for drug candidate identification and data analysis.Leverage AI algorithms and predictive analytics to analyze large datasets, identify potential drug candidates, optimize trial designs, and predict treatment outcomes, accelerating the drug development process
R&D Investments: Improve the drug or expand indicationsUtilize computational modelling and simulation techniques to accelerate drug discovery and optimize drug development processes